Table 4 Cross-validation results of the model.

From: Fault diagnosis using ISMA to optimize SVM parameters for aircraft engine damage repair

Data set

Model

Accuracy rate

Precision rate

Recall

F1 score

p-value (vs. SVM)

C-MAPSS

SVM

0.8431 ± 0.032

0.7586 ± 0.041

0.7197 ± 0.038

0.7197 ± 0.035

/

WOA-SVM

0.9159 ± 0.032

0.8966 ± 0.041

0.888 ± 0.029

0.888 ± 0.027

0.002

SMA-SVM

0.9404 ± 0.032

0.931 ± 0.021

0.9286 ± 0.019

0.9286 ± 0.017

0.001

ISMA-SVM

0.9724 ± 0.012

0.9655 ± 0.021

0.965 ± 0.013

0.965 ± 0.011

0.0005

Build your own simulation data set

SVM

0.9151 ± 0.028

0.9102 ± 0.030

0.9106 ± 0.026

0.9106 ± 0.024

/

WOA-SVM

0.9433 ± 0.021

0.9391 ± 0.023

0.9396 ± 0.020

0.9396 ± 0.019

0.003

SMA-SVM

0.9543 ± 0.016

0.9519 ± 0.018

0.9523 ± 0.015

0.9523 ± 0.014

0.0015

ISMA-SVM

0.9679 ± 0.010

0.9647 ± 0.012

0.9644 ± 0.011

0.9644 ± 0.010

0.0008