Table 5 Analysis of confusion matrix for different diagnostic models.

From: Fault diagnosis using ISMA to optimize SVM parameters for aircraft engine damage repair

Different fault diagnosis models

/

Actual positive example

The actual counterexample

Accuracy (ACC)

Recall

F1 scores

P-value of t-test with ISMA-SVM

PSO-SVM

Predict positive examples

TP = 800

FP = 200

0.80 ± 0.04

0.84 ± 0.03

0.82 ± 0.03

0.002

Predict counterexamples

FN = 150

TN = 1850

WOA-SVM

Predict positive examples

TP = 750

FP = 250

0.75 ± 0.05

079 ± 0.04

0.77 ± 0.04

0.001

Predict counterexamples

FN = 200

TN = 18D0

SMA-SVM

Predict positive examples

TP = 850

FP = 150

0.85 ± 0.03

0.89 ± 0.02

0.87 ± 0.02

0.015

Predict counterexamples

FN = 100

TN = 1900

ISMA-SVM

Predict positive examples

TP = 900

FP = 100

0.90 ± 0.02

0.95 ± 0.01

0.92 ± 0.01

/

Predict counterexamples

FN = 50

TN = 1950