Table 3 Item loadings, cronbach’s alpha, CR, and AVE for studied variables.

From: Unpacking the mechanisms and consequences of artificial intelligence in enabling green value co-creation for SMEs

 

Factor loadings

Artificial intelligence capabilities (AIC): α = 0.935, CR = 0.944, AVE = 0.512

 AIC1

0.649

 AIC2

0.747

 AIC3

0.699

 AIC4

0.683

 AIC5

0.738

 AIC6

0.663

 AIC7

0.707

 AIC8

0.719

 AIC9

0.772

 AIC10

0.652

 AIC11

0.682

 AIC12

0.744

 AIC13

0.788

 AIC14

0.714

 AIC15

0.692

 AIC16

0.775

Green exploration learning (GER): α = 0.892, CR = 0.925, AVE = 0.756

 GER1

0.875

 GER2

0.870

 GER3

0.852

 GER4

0.882

Green exploitation learning (GEI): α = 0.896, CR = 0.928, AVE = 0.763

 GEI1

0.878

 GEI2

0.879

 GEI3

0.888

 GEI4

0.849

Green value co-creation (GVC): α = 0.936, CR = 0.946, AVE = 0.614

 GVC1

0.755

 GVC2

0.751

 GVC3

0.744

 GVC4

0.746

 GVC5

0.773

 GVC6

0.817

 GVC7

0.760

 GVC8

0.848

 GVC9

0.801

 GVC10

0.810

 GVC11

0.804

Economic Performance (ECP): α = 0.860, CR = 0.905, AVE = 0.706

 ECP1

0.837

 ECP2

0.859

 ECP3

0.846

 ECP4

0.816

Environmental performance (ENP): α = 0.880, CR = 0.918, AVE = 0.736

 ENP1

0.866

 ENP2

0.864

 ENP3

0.856

 ENP4

0.846

Social performance (SOP): α = 0.863, CR = 0.918, AVE = 0.788

 SOP1

0.903

 SOP2

0.880

 SOP3

0.879

  1. Notes: N = 632.