Table 1 Classification performance on the ISIC 2019 dataset.

From: MTAKD: multi-teacher agreement knowledge distillation for edge AI skin disease diagnosis

Model

Number of parameters

Accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

RegNetY32GF

143,397,218

86.48 ± 0.41

86.33 ± 0.36

86.48 ± 0.41

86.32 ± 0.39

DenseNet201

19,309,640

85.37 ± 0.48

85.41 ± 0.46

85.37 ± 0.48

85.31 ± 0.47

Xception

21,914,672

81.33 ± 0.54

81.05 ± 0.65

81.33 ± 0.54

81.02 ± 0.62

InceptionV3

22,855,976

82.45 ± 0.38

82.41 ± 0.42

82.45 ± 0.38

82.29 ± 0.38

NASNetMobile

4,815,004

80.53 ± 0.63

80.14 ± 0.81

80.53 ± 0.63

80.08 ± 0.80

EfficientNetV2B0

6,579,288

80.57 ± 0.60

80.33 ± 0.54

80.57 ± 0.60

79.98 ± 0.64

MobileNetV2

2,917,960

80.17 ± 0.72

80.00 ± 0.76

80.23 ± 0.82

79.86 ± 0.78