Table 2 Classification performance on the Fitzpatrick17k-C dataset.

From: MTAKD: multi-teacher agreement knowledge distillation for edge AI skin disease diagnosis

Model

Number of parameters

Accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

RegNetY32GF

143,451,596

45.86 ± 0.62

47.52 ± 0.83

45.86 ± 0.62

45.31 ± 0.66

DenseNet201

19,364,018

42.33 ± 0.45

44.19 ± 0.42

42.33 ± 0.45

41.75 ± 0.52

Xception

21,969,050

36.11 ± 0.67

37.37 ± 0.83

36.11 ± 0.67

34.80 ± 0.80

InceptionV3

22,910,354

38.42 ± 0.78

39.01 ± 0.73

38.42 ± 0.78

37.61 ± 0.52

NASNetMobile

4,869,382

34.67 ± 0.70

36.28 ± 0.61

34.67 ± 0.70

33.94 ± 0.74

EfficientNetV2B0

6,633,666

35.24 ± 0.61

36.80 ± 0.96

35.24 ± 0.61

33.59 ± 0.86

MobileNetV2

2,972,338

35.07 ± 0.57

36.86 ± 0.91

35.07 ± 0.57

34.15 ± 0.73