Table 6 Results of evaluation criteria for ML models.
ML algorithms | Class | Accuracy (%) | Precision (%) | Recall (%) | F-1Score (%) | ||||
|---|---|---|---|---|---|---|---|---|---|
Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | ||
KNN | Non-Polished | ----- | ----- | 94.45 | 0.52 | 89.05 | 0.79 | 91.67 | 0.53 |
Polished | ----- | ----- | 89.55 | 0.71 | 94.71 | 0.49 | 92.06 | 0.47 | |
Overall | 91.87 | 0.48 | 92.01 | 0.47 | 91.87 | 0.48 | 91.86 | 0.48 | |
DT | Non-Polished | ----- | ----- | 87.74 | 0.75 | 86.62 | 0.82 | 87.18 | 0.54 |
Polished | ----- | ----- | 86.68 | 0.66 | 87.79 | 0.72 | 87.22 | 0.39 | |
Overall | 87.20 | 0.43 | 87.22 | 0.43 | 87.20 | 0.43 | 87.20 | 0.43 | |
ETs | Non-Polished | ----- | ----- | 93.78 | 0.55 | 90.72 | 0.81 | 92.22 | 0.50 |
Polished | ----- | ----- | 90.93 | 0.73 | 93.92 | 0.50 | 92.40 | 0.41 | |
Overall | 92.31 | 0.44 | 92.36 | 0.43 | 92.31 | 0.44 | 92.31 | 0.44 | |
RF | Non-Polished | ----- | ----- | 92.71 | 0.61 | 90.42 | 0.70 | 91.55 | 0.51 |
Polished | ----- | ----- | 90.57 | 0.63 | 92.82 | 0.53 | 91.68 | 0.42 | |
Overall | 91.62 | 0.45 | 91.65 | 0.45 | 91.62 | 0.45 | 91.62 | 0.45 | |
SVM | Non-Polished | ----- | ----- | 96.11 | 0.53 | 94.82 | 0.46 | 95.46 | 0.37 |
Polished | ----- | ----- | 94.84 | 0.45 | 96.12 | 0.51 | 95.48 | 0.35 | |
Overall | 95.47 | 0.36 | 95.48 | 0.36 | 95.47 | 0.36 | 95.47 | 0.36 | |
BPNN | Non-Polished | ----- | ----- | 96.45 | 0.69 | 95.55 | 0.76 | 95.99 | 0.34 |
Polished | ----- | ----- | 95.55 | 0.73 | 96.44 | 0.76 | 95.99 | 0.35 | |
Overall | 96.10 | 0.34 | 96.02 | 0.33 | 95.99 | 0.34 | 95.99 | 0.34 | |