Table 6 Results of evaluation criteria for ML models.

From: Texture-based image analysis and explainable machine learning for polished asphalt identification in pavement condition monitoring

ML algorithms

Class

Accuracy (%)

Precision (%)

Recall (%)

F-1Score (%)

Mean

Std.

Mean

Std.

Mean

Std.

Mean

Std.

KNN

Non-Polished

-----

-----

94.45

0.52

89.05

0.79

91.67

0.53

Polished

-----

-----

89.55

0.71

94.71

0.49

92.06

0.47

Overall

91.87

0.48

92.01

0.47

91.87

0.48

91.86

0.48

DT

Non-Polished

-----

-----

87.74

0.75

86.62

0.82

87.18

0.54

Polished

-----

-----

86.68

0.66

87.79

0.72

87.22

0.39

Overall

87.20

0.43

87.22

0.43

87.20

0.43

87.20

0.43

ETs

Non-Polished

-----

-----

93.78

0.55

90.72

0.81

92.22

0.50

Polished

-----

-----

90.93

0.73

93.92

0.50

92.40

0.41

Overall

92.31

0.44

92.36

0.43

92.31

0.44

92.31

0.44

RF

Non-Polished

-----

-----

92.71

0.61

90.42

0.70

91.55

0.51

Polished

-----

-----

90.57

0.63

92.82

0.53

91.68

0.42

Overall

91.62

0.45

91.65

0.45

91.62

0.45

91.62

0.45

SVM

Non-Polished

-----

-----

96.11

0.53

94.82

0.46

95.46

0.37

Polished

-----

-----

94.84

0.45

96.12

0.51

95.48

0.35

Overall

95.47

0.36

95.48

0.36

95.47

0.36

95.47

0.36

BPNN

Non-Polished

-----

-----

96.45

0.69

95.55

0.76

95.99

0.34

Polished

-----

-----

95.55

0.73

96.44

0.76

95.99

0.35

Overall

96.10

0.34

96.02

0.33

95.99

0.34

95.99

0.34