Table 6 Comparative performance analysis of GWO-CTransNet against existing sign language recognition methods on ASL alphabet and ASL MNIST datasets.

From: A hybrid CNN-transformer framework optimized by Grey Wolf Algorithm for accurate sign language recognition

References

Approach used

Performance metric

ASL alphabet

ASL MNIST

17

AEGWO-NET-ANN

Accuracy

97.69

98.26

F1-score

95.06

96.83

MCC

93.82

97.46

AUC

96.07

97.83

41

HOG-GA-MLP

Accuracy

91.34

94.35

F1-score

89.72

94.32

MCC

90.16

93.39

AUC

89.34

92.67

42

LBP-GA-SVM

Accuracy

91.12

96.71

F1-score

89.96

94.08

MCC

90.16

96.59

AUC

89.64

97.02

43

GWO-rough set-Naïve bayes

Accuracy

89.06

97.35

F1-score

87.43

95.12

MCC

88.62

95.52

AUC

87.59

96.05

44

PSO-CNN

Accuracy

96.45

99.16

F1-score

94.43

98.45

MCC

92.99

99.57

AUC

95.91

99.73

45

GWO-CNN

Accuracy

98.42

99.83

F1-score

96.87

97.36

MCC

95.04

98.42

AUC

97.28

99.06

Proposed Approach

GWO-CTransNet

Accuracy

99.40

98.07

F1-score

99.31

97.90

MCC

98.80

97.50

AUC

99.20

97.87