Table 3 Comparative analysis of the IODAS-IOA model with existing techniques.

From: An intelligent framework for visually impaired people through indoor object Detection-Based assistive system using YOLO with recurrent neural networks

Technique

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}}_{\varvec{s}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

SLAM2

94.82

90.31

91.03

96.00

YOLOv11

97.07

91.82

93.10

96.06

RT-DETRv2

99.29

92.93

91.55

94.52

PointNet++

94.13

89.74

90.34

95.56

RSNet

96.38

91.13

92.39

95.49

Faster-RCNN

98.61

92.18

93.96

93.99

YOLOv3

91.94

97.70

91.45

90.01

Sparse RCNN

91.26

93.06

89.44

94.95

YOLOXs

95.13

95.83

92.93

90.45

YOLOv8s

92.45

94.35

92.14

89.08

IODAS-IOA

99.74

98.75

94.33

96.32