Table 16 The impact of the parameter \({\mu }\) and \(\beta\) on the decision result by AROMAN method.
From: Smart system for forecasting financial outcomes and supporting strategic choices
\(\Omega\) | r | \({M^{\kappa }}_{1}\) | \({M^{\kappa }}_{2}\) | \({M^{\kappa }}_{3}\) | \({M^{\kappa }}_{4}\) | \({M^{\kappa }}_{5}\) | \({M^{\kappa }}_{6}\) | \({M^{\kappa }}_{7}\) | \({M^{\kappa }}_{8}\) | Ranking |
|---|---|---|---|---|---|---|---|---|---|---|
\(\beta =0.1\) | \({\mu }=5\) | 0.3857 | 0.4521 | 0.5927 | 0.6373 | 0.4603 | 0.4676 | 0.5793 | 0.6151 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) |
\({\mu }=8\) | 0.3924 | 0.4690 | 0.5895 | 0.6297 | 0.4721 | 0.4632 | 0.5879 | 0.6048 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=10\) | 0.3786 | 0.4449 | 0.6032 | 0.6409 | 0.4537 | 0.4715 | 0.5821 | 0.6187 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=50\) | 0.3954 | 0.4485 | 0.5849 | 0.6381 | 0.4702 | 0.4651 | 0.5852 | 0.6059 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=100\) | 0.3805 | 0.4471 | 0.5887 | 0.6279 | 0.4668 | 0.4642 | 0.5814 | 0.6104 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\(\beta =0.5\) | \({\mu }=5\) | 0.3863 | 0.4612 | 0.5916 | 0.6392 | 0.4684 | 0.4667 | 0.5827 | 0.6078 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) |
\({\mu }=8\) | 0.3840 | 0.4575 | 0.5868 | 0.6420 | 0.4713 | 0.4630 | 0.5845 | 0.6035 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=10\) | 0.3932 | 0.4527 | 0.5972 | 0.6284 | 0.4591 | 0.4694 | 0.5786 | 0.6129 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=50\) | 0.3985 | 0.4553 | 0.5909 | 0.6315 | 0.4619 | 0.4721 | 0.5772 | 0.6181 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=100\) | 0.3969 | 0.4607 | 0.5920 | 0.6298 | 0.4636 | 0.4663 | 0.5818 | 0.6072 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\(\beta =0.7\) | \({\mu }=5\) | 0.3881 | 0.4515 | 0.5945 | 0.6389 | 0.4665 | 0.4708 | 0.5788 | 0.6166 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) |
\({\mu }=8\) | 0.3808 | 0.4604 | 0.5937 | 0.6365 | 0.4633 | 0.4656 | 0.5816 | 0.6084 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=10\) | 0.3913 | 0.4497 | 0.5872 | 0.6331 | 0.4672 | 0.4662 | 0.5775 | 0.6107 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=50\) | 0.3940 | 0.4608 | 0.5907 | 0.6357 | 0.4686 | 0.4654 | 0.5812 | 0.6071 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=100\) | 0.3865 | 0.4544 | 0.5939 | 0.6378 | 0.4618 | 0.4724 | 0.5780 | 0.6119 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\(\beta =0.9\) | \({\mu }=5\) | 0.3818 | 0.4492 | 0.5906 | 0.6416 | 0.4627 | 0.4698 | 0.5846 | 0.6051 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) |
\({\mu }=8\) | 0.3844 | 0.4529 | 0.5991 | 0.6281 | 0.4608 | 0.4660 | 0.5828 | 0.6092 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=10\) | 0.3803 | 0.4535 | 0.5904 | 0.6313 | 0.4636 | 0.4658 | 0.5849 | 0.6040 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=50\) | 0.3920 | 0.4583 | 0.5930 | 0.6408 | 0.4675 | 0.4709 | 0.5779 | 0.6156 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) | |
\({\mu }=100\) | 0.3973 | 0.4591 | 0.5946 | 0.6428 | 0.4700 | 0.4715 | 0.5774 | 0.6162 | \({M^{\kappa }}_{4} \succ {M^{\kappa }}_{8} \succ {M^{\kappa }}_{3} \succ {M^{\kappa }}_{7} \succ {M^{\kappa }}_{6} \succ {M^{\kappa }}_{5} \succ {M^{\kappa }}_{2} \succ {M^{\kappa }}_{1}\) |