Table 2 Relationships between various factors and force values.

From: A predictive model for vertical ground reaction force during incline push-ups

Angle

Rhythms

Regression equation

F

R

P

Durbin-Watson

10°

Fast

Max

\(\text{y}=9.092\times {\text{X}}_{1}+203.816\times {\text{X}}_{2}-178.193\)

4.816

0.580

0.020

2.301

Medium

Max

\(\text{y}=6.508\times {\text{X}}_{1}+689.477\times {\text{X}}_{2}-153.167\)

8.617

0.690

0.002

2.045

20°

Fast

Max

\(\text{y}=87.984+6.064\times {\text{X}}_{1}+212.251\times {\text{X}}_{2}\)

4.160

0.552

0.032

2.448

Medium

Min

\(\text{y}=847.048-4.794\times {\text{X}}_{1}-337.472\times {\text{X}}_{2}\)

5.583

0.608

0.012

2.127

Max

\(\text{y}=487.155-0.724\times {\text{X}}_{1}+487.899\times {\text{X}}_{2}\)

4.264

0.557

0.030

1.793

Slow

Min

\(\text{y}=653.687-2.025\times {\text{X}}_{1}-364.877\times {\text{X}}_{2}\)

11.815

0.745

 < 0.001

2.352

Max

\(\text{y}=6.864\times {\text{X}}_{1}+324.652\times {\text{X}}_{2}-12.715\)

11.188

0.735

0.001

2.080

30°

Fast

Max

\(\text{y}=328.141+0.481\times {\text{X}}_{1}+565.646\times {\text{X}}_{2}\)

4.005

0.545

0.035

1.889

Slow

Max

\(\text{y}=369.672+1.326\times {\text{X}}_{1}+396.970\times {\text{X}}_{2}\)

3.830

0.536

0.040

1.929

  1. y = force (N); X₁ = body mass (kg); X₂ = average concentric velocity (m s−1).