Table 8 Grey Wolf optimization results on machine learning Models.
Final Models | \(\:{\varvec{R}}^{2}\) Score | MSE | RMSE | MAE | EVS | MAPE | SMAPE | Max Error |
|---|---|---|---|---|---|---|---|---|
Decision Tree | 0.99746 | 1625.80801 | 40.32130 | 26.07216 | 0.99748 | 0.00700 | 0.69795 | 178.00000 |
Random Forest + LR | 0.99739 | 1672.00258 | 40.89012 | 26.92892 | 0.99742 | 0.00709 | 0.70782 | 148.81463 |
kNN + LR | 0.99845 | 990.88814 | 31.47837 | 19.85222 | 0.99845 | 0.00527 | 0.52737 | 114.21565 |
LightGBM | 0.98978 | 6549.0062 | 80.92593 | 28.11171 | 0.98978 | 0.00843 | 0.81587 | 1068.38786 |
Gradient Boosting + LR | 0.99902 | 626.21541 | 25.02429 | 15.06049 | 0.99902 | 0.00400 | 0.39935 | 159.74076 |
AdaBoost + LR | 0.95092 | 31455.399 | 177.35670 | 143.39257 | 0.95112 | 0.03798 | 3.78873 | 535.84895 |
CatBoost | 0.99920 | 509.40400 | 22.56998 | 13.59114 | 0.99920 | 0.00358 | 0.35762 | 101.05405 |
XGBoost | 0.99893 | 682.15078 | 26.11801 | 15.35519 | 0.99894 | 0.00404 | 0.40454 | 124.02148 |
MLP + LR | 0.99927 | 466.06792 | 21.58860 | 13.14148 | 0.99927 | 0.00355 | 0.35490 | 104.24291 |