Table 3 Comparative performance of the proposed models using ANN classifier versus CNN/ViT baselines.

From: Intelligent retinal disease detection using deep learning

Model

Trainable Parameters

Epochs

Validation Accuracy (%)

Training Time (min)

DenseNet121

(Fully fine-tuned CNN)

~6.9 M

35

97.4

30.8

MobileNetV2

(Fully fine-tuned CNN)

~2.3M

30

98.0

11.9

ViT

~85 M

40

98.4

39.6

Model A

(DenseNet121 with PCA)

~0.157 M

20

97.4

1.32

Model B

(MobileNetV2 with PCA and DWT)

~0.16 M

20

96.6%

1.35

Model C

(MobileNetV2, DenseNet121 with PCA and DWT)

~0.28 M

20

98.2

2.32

Model D

(MobileNetV2 with PCA)

~0.16 M

20

98.1

1.32