Table 1 Summary of research in the field of classical and quantum ML.

From: Robust evaluation of classical and quantum machine learning under noise, imbalance, feature reduction and explainability

Ref

Dataset

Techniques

Result

XAI

Noise

Feature selection

Year

10

RoEduNet-SIMARGL2021, CICIDS-2017

RF, ADA, DNN, SVM, KNN, MLP, LIGHT GBM

99%

Yes

No

Yes

2024

11

Audio sensor data

SVM, RF, LR, GNB, EGB

80.28%

Yes

No

Yes

2024

12

Case Western Reserve University (CWRU) bearing dataset

Convolutional Long Short-Term Memory (CLSTM)

n/a

Yes

No

Yes

2024

13

ShipsEar dataset and simulated submarine data

RF, ADA boost, GBDT, X boost

94.5%,76%,95%,96.7%

No

No

Yes

2023

14

Phase classification dataset

QSVM, VQC

97.73,96.49

Yes

No

Yes

2025

15

MNIST FMNIST, KMNIST, and CIFAR10

Quantum autoencoder + VQC

65%

Yes

No

No

2025

16

MNIST, Ionosphere, waveform, Madelon, synth_10, synth_100

QUBO

90, 78,87

No

No

Yes

2025

17

Wisconsin breast cancer data, kaggles’s Club data

QUBO

69,62, 72.06

No

No

Yes

2023