Table 4 Governing equations, fitting parameters, and key features of the Power-law, Bingham Plastic, and Herschel–Bulkley models.
Model | Equation | Model parameters | Advantages | Disadvantages |
|---|---|---|---|---|
Power-law model | \(\:\tau\:=k.{\dot{\gamma\:}}^{n}\) | τ: shear stress (Pa); k: consistency index (Pa·sn); \(\:\dot{\varvec{\gamma\:}}\): shear rate (s− 1); n: flow behavior index (-) | Simple, easy to apply to non-Newtonian fluids; classifies fluids as shear-thinning (n < 1), Newtonian (n = 1), or shear-thickening (n > 1)41 | Does not predict yield stress; limited accuracy outside tested shear rate range41 |
Bingham Plastic model | \(\:\tau\:={\tau\:}_{^\circ\:}+k\dot{\gamma\:}\) | τ0 : yield stress (Pa); k: plastic viscosity (Pa·s); \(\:\dot{\varvec{\gamma\:}}\): shear rate (s− 1) | Accounts for yield stress; suitable for materials that behave as rigid bodies below τ042 | Cannot describe shear-thinning or shear-thickening; oversimplifies complex fluids42 |
Herschel–Bulkley model | \(\:\tau\:={\tau\:}_{^\circ\:}+k\dot{{\gamma\:}^{n}}\) | τ0: yield stress (Pa); k: consistency index (Pa·sn); n: flow behavior index (-); \(\:\dot{\varvec{\gamma\:}}\) : shear rate (s− 1) | Combines yield stress and non-Newtonian flow; flexible model applicable to many complex fluids43 | Requires more parameters; fitting may be complex; overfitting risk with limited data43,44 |