Table 3 A comparison of the LAug method was carried out while keeping a consistent architecture.
From: Multi-view hybrid encoder U-Net for 3D renal vascular medical image segmentation
Encoder Arch. | Lower encoder | Loss | FPR | Recall | DSC | MSD |
|---|---|---|---|---|---|---|
CNNs + CNNs | Ese Vovnet39b32 | 0.4478 | 0.043 | 0.894 | 0.923 | 0.826 |
Convnext Small34 | 0.4350 | 0.032 | 0.890 | 0.926 | 0.829 | |
DM Nfnet F035 | 0.4313 | 0.048 | 0.916 | 0.933 | 0.837 | |
CNNs + ViTNets | Sam2 Hiera Small38 | 0.4367 | 0.042 | 0.887 | 0.920 | 0.831 |
Swin Tiny39 | 0.4334 | 0.033 | 0.905 | 0.934 | 0.836 | |
| Â | Proposed (CoaT Lite Small)41 | 0.4323 | 0.028 | 0.891 | 0.928 | 0.832 |