Table 4 Comparing performance using only SoftBCEWithLogitsLoss with a fixed model architecture.
From: Multi-view hybrid encoder U-Net for 3D renal vascular medical image segmentation
Encoder Arch. | Lower encoder | Loss | FPR | Recall | DSC | MSD |
|---|---|---|---|---|---|---|
CNNs + CNNs | Ese Vovnet39b32 | 0.0120 | 0.342 | 0.978 | 0.843 | 0.773 |
ConvNext Small34 | 0.0113 | 0.146 | 0.954 | 0.909 | 0.822 | |
DM Nfnet F035 | 0.0128 | 0.104 | 0.956 | 0.928 | 0.834 | |
CNNs + ViTNets | Sam2 Hiera Small38 | 0.0150 | 0.144 | 0.963 | 0.914 | 0.820 |
Swin Tiny39 | 0.0111 | 0.141 | 0.955 | 0.911 | 0.827 | |
| Â | Proposed (CoaT Lite Small)41 | 0.0100 | 0.131 | 0.967 | 0.922 | 0.836 |