Table 22 Performance comparison for in-the-wild and cross-distribution scenarios.

From: PatternFusion: a hybrid model for pattern recognition in time-series data using ensemble learning

Model configuration

In-the-wild dataset

Accuracy (%)

F1-score (%)

AUC (%)

EER (%)

PatternFusion (baseline)

FaceForensics++

87.3

85.2

89.1

4.3

LFW

88.9

86.7

90.5

3.9

PatternFusion + fine-tuning

FaceForensics++

91.8

89.4

92.7

3.2

LFW

93.2

91.1

94.1

2.8

PatternFusion + domain-adversarial training

FaceForensics++

93.5

91.6

94.3

2.5

LFW

94.7

93.4

95.8

2.2