Table 1 In simulation scenario 1–1, the values of feature importance obtained from XAI methods.
From: Pseudo datasets estimate feature attribution in artificial neural networks
Feature | LR coefficients | PDPE | SHAP Value |
|---|---|---|---|
X1 | 0.0071 ± 0.0697 | 0.0045 ± 0.0250 | 0.0123 ± 0.0080 |
X2 | 0.0114 ± 0.0610 | 0.0082 ± 0.0241 | 0.0130 ± 0.0103 |
X3 | 0.0039 ± 0.0644 | 0.0072 ± 0.0239 | 0.0146 ± 0.0098 |
X4 | 0.0028 ± 0.0646 | 0.0063 ± 0.0203 | 0.0111 ± 0.0074 |
X5 | − 0.0026 ± 0.0651 | 0.0059 ± 0.0244 | 0.0137 ± 0.0105 |
X6 | − 0.0046 ± 0.1304 | − 0.0067 ± 0.0418 | 0.0082 ± 0.0059 |
X7 | 0.0090 ± 0.1123 | 0.0033 ± 0.0392 | 0.0082 ± 0.0058 |
X8 | 0.0022 ± 0.1276 | 0.0004 ± 0.0421 | 0.0098 ± 0.0073 |
X9 | − 0.0098 ± 0.1339 | − 0.0082 ± 0.0464 | 0.0100 ± 0.0088 |
X10 | 0.0004 ± 0.1220 | − 0.0072 ± 0.0383 | 0.0084 ± 0.0067 |