Table 3 In simulation scenario 2–1, the Feature relative importance obtained through absolute sum normalization.

From: Pseudo datasets estimate feature attribution in artificial neural networks

Feature

LR coefficients

PDPE

SHAP value

Mean (95% CI)

Mean (95% CI)

Mean (95% CI)

X1

0.2609 (0.2579, 0.2640)

0.2483 (0.2448, 0.2515)

0.5058 (0.4979, 0.5137)

X2

− 0.1555 (− 0.1583, − 0.1526)

− 0.1519 (− 0.1549, − 0.1488)

0.1960 (0.1894, 0.2024)

X3

0.1041 (0.1018, 0.1067)

0.1045 (0.1018, 0.1068)

0.0950 (0.0908, 0.0994)

X4

0.0004 (− 0.0021, 0.0032)

0.0002 (− 0.0028, 0.0029)

0.0083 (0.0069, 0.0097)

X5

− 0.0002 (− 0.0026, 0.0021)

0.0008 (− 0.0015, 0.0032)

0.0075 (0.0061, 0.0089)

X6

0.1826 (0.1777, 0.1874)

0.1864 (0.1808, 0.1914)

0.0744 (0.0698, 0.0790)

X7

0.0262 (0.0214, 0.0304)

0.0266 (0.0214, 0.0317)

0.0073 (0.0062, 0.0085)

X8

− 0.2061 (− 0.2100, − 0.2022)

− 0.2116 (− 0.2161, − 0.2069)

0.0933 (0.0883, 0.0981)

X9

− 0.0003 (− 0.0055, 0.0046)

0.0000 (− 0.0050, 0.0050)

0.0064 (0.0055, 0.0074)

X10

0.0021 (− 0.0032, 0.0072)

0.0028 (− 0.0027, 0.0082)

0.0059 (0.0048, 0.0071)

  1. LR, Logistic regression; PDPE, Pseudo datasets effect; SHAP, Shapley additive explanations.