Table 4 Comparison on computation cost of related schemes.

From: Sybil-resistant and privacy-preserving authentication based on short-term pseudonym for internet of vehicles

Schemes

Sign one message (ms)

Authentication \(n(n>1)\) messages (ms)

Total cost (ms)

Zhu et al.1

\(1{{T}_{sm-ecc}}+2{{T}_{h}}=0.4422\)

\((2n+3){{T}_{sm-ecc}}+(3n-3){{T}_{sm-ecc-s}}+(3n+1){{T}_{pa-ecc}}\)

\(+3n{{T}_{h}}=0.9311n+1.2864\)

\(0.9311n+1.7286\)

Wu et al.7

\(3{{T}_{sm-ecc}}+1{{T}_{mtp}}+1{{T}_{h}}=9.5331\)

\(3{{T}_{bp}}+3n{{T}_{sm-bp}}+2n{{T}_{mtp}}+n{{T}_{h}}=13.9391n+12.633\)

\(13.9391n+22.1661\)

Zhu et al.8

\(1{{T}_{sm-ecc}}+1{{T}_{h}}=0.4421\)

\((n+2){{T}_{sm-ecc}}+3n{{T}_{pa-ecc}}+2n{{T}_{h}}=0.4476n+0.884\)

\(0.4476n+1.3261\)

Zhou et al.18

\(1{{T}_{sm-ecc}}+2{{T}_{h}}=0.4422\)

\((2n+2){{T}_{sm-ecc}}+3n{{T}_{pa-ecc}}+3n{{T}_{h}}=0.8897n+0.884\)

\(0.8897n+1.3262\)

Yang et al.29

\(1{{T}_{sm-ecc}}+2{{T}_{h}}=0.4422\)

s\((4n+1){{T}_{sm-ecc}}+3n{{T}_{pa-ecc}}+4n{{T}_{h}}=1.7738n+0.442\)

\(1.7738n+0.8842\)

Our scheme

\(1{{T}_{sm-ecc}}+2{{T}_{h}}=0.4422\)

\((2n+3){{T}_{sm-ecc}}+(3n+1){{T}_{pa-ecc}}+(3n+1){{T}_{h}}\) \(= 0.8897n+1.3279\)

\(0.8897n+1.7701\)