Table 3 Results for AD-MCI binary classification task.
Method | SEN | SPEC | F-measure | Precision | Balanced Accuracy |
|---|---|---|---|---|---|
No augmentation | 0.734 | 0.6804 | 0.7113 | 0.69 | 0.7072 |
Local Laplacian augmentation | 0.6383 | 0.6598 | 0.6417 | 0.6452 | 0.649 |
Prewitt-edge emphasizing augmentation | 0.7128 | 0.701 | 0.7053 | 0.6979 | 0.7069 |
Unsharp masking augmentation | 0.6383 | 0.6804 | 0.6486 | 0.6593 | 0.6594 |
Local contrast augmentation | 0.6702 | 0.6598 | 0.6632 | 0.6562 | 0.665 |
LoG augmentation | 0.6809 | 0.732 | 0.6957 | 0.7111 | 0.7064 |
Ellipsoidal averaging augmentation | 0.6596 | 0.701 | 0.6703 | 0.6813 | 0.6803 |
Prewitt-edge emphasizing + LoG augmentations | 0.7021 | 0.6392 | 0.6769 | 0.6535 | 0.6707 |