Table 5 Multivariable regression results and key diagnostics.(A) multivariable linear regression for abnormality count and (B) logistic regression for selected specific abnormalities.
Outcome | Predictor | β/OR | 95% CI | p-value | Model Fit |
|---|---|---|---|---|---|
A) Multivariable linear regression (abnormality count) | |||||
Abnormality count (continuous) | BMI (kg/m²) | 0.12 | 0.09–0.15 | < 0.001 | R² = 0.43 |
Age (years) | 0.08 | 0.05–0.11 | < 0.001 | Adjusted R² = 0.41 | |
Work experience (years) | 0.06 | 0.03–0.09 | < 0.01 | VIF max = 1.84 | |
B) Logistic regression for specific abnormalities | |||||
Lumbar lordosis (yes/no) | BMI ≥ 30 vs. < 30 | 2.3 | 1.5–3.5 | < 0.001 | Nagelkerke R² = 0.28 |
Genu varum (yes/no) | BMI ≥ 30 vs. < 30 | 1.9 | 1.3–2.8 | < 0.01 | Hosmer–Lemeshow p = 0.73 |
Genu recurvatum (yes/no) | BMI ≥ 30 vs. < 30 | 1.6 | 1.1–2.4 | < 0.05 | |
B) Model diagnostics | |||||
Multicollinearity (VIF max) | 1.84 | ||||
Normality of residuals (Shapiro–Wilk) | p = 0.062 | ||||
Heteroscedasticity (Breusch–Pagan) | p = 0.119 | ||||
Influential observations (Cook’s D) | max = 0.0073 (threshold = 0.0096) | ||||