Table 5 Multivariable regression results and key diagnostics.(A) multivariable linear regression for abnormality count and (B) logistic regression for selected specific abnormalities.

From: Optimizing ergonomic risk assessment using fuzzy irregular cellular automata: a novel approach to modeling musculoskeletal disorders in industrial workstations

Outcome

Predictor

β/OR

95% CI

p-value

Model Fit

A) Multivariable linear regression (abnormality count)

Abnormality count (continuous)

BMI (kg/m²)

0.12

0.09–0.15

< 0.001

R² = 0.43

Age (years)

0.08

0.05–0.11

< 0.001

Adjusted R² = 0.41

Work experience (years)

0.06

0.03–0.09

< 0.01

VIF max = 1.84

B) Logistic regression for specific abnormalities

Lumbar lordosis (yes/no)

BMI ≥ 30 vs. < 30

2.3

1.5–3.5

< 0.001

Nagelkerke R² = 0.28

Genu varum (yes/no)

BMI ≥ 30 vs. < 30

1.9

1.3–2.8

< 0.01

Hosmer–Lemeshow p = 0.73

Genu recurvatum (yes/no)

BMI ≥ 30 vs. < 30

1.6

1.1–2.4

< 0.05

 

B) Model diagnostics

Multicollinearity (VIF max)

1.84

Normality of residuals (Shapiro–Wilk)

p = 0.062

Heteroscedasticity (Breusch–Pagan)

p = 0.119

Influential observations (Cook’s D)

max = 0.0073 (threshold = 0.0096)