Table 1 WMF-Traffic Component Configuration.

From: Multi-scale Wavelet-Mamba framework for spatiotemporal traffic forecasting

Component

Parameter

Value

MWD

Decomposition levels (L)

3

Wavelet basis

Daubechies-4

Energy threshold

0.01

Padding mode

symmetric

WTC

Base kernel size (\(k_0\))

7

Maximum kernel size (\(k_{\max }\))

15

Scaling factor (\(\rho\))

1.5

Attention dimension (\(d_\alpha\))

16

Gating activation

Sigmoid

T-Mamba

Hidden dimension (\(d_h\))

64

Feature dimension (\(d_i\),\(d_o\))

32

Context dimension (\(d_c\))

8

Temporal scales (K)

4

Mixing coefficient (\(\gamma\))

0.1

Selection smoothing

Softplus

FPA

Period priors\(\{p\}\)

{24, 168, 8760} hours

Energy scaling (\(\beta\))

0.5

Frequency attention dim

32

Phase preservation (\(\lambda _\pi\))

0.3

Training

Batch size

32

Learning rate

0.001

Weight decay

0.0001

Dropout rate

0.1

Training epochs

1000