Table 3 Classification accuracy and F1-score of seven classifiers on the first air compressor dataset using different sampling methods. UEDSM consistently achieves the best overall balance, with ALDNet+UEDSM attaining the highest performance.
| Â | Â | ALDNet (%) | SVM (%) | Decision tree (%) | Random forest (%) | Naive Bayes (%) | KNN (%) | XGBoost (%) |
|---|---|---|---|---|---|---|---|---|
UEDSM | Accuracy | 98.69 | 98.44 | 98.29 | 98.56 | 95.58 | 98.05 | 98.50 |
F1-score | 84.00 | 81.87 | 78.20 | 82.25 | 64.05 | 78.31 | 80.47 | |
ClusterCentroids | Accuracy | 98.23 | 98.47 | 64.70 | 98.53 | 95.58 | 98.02 | 98.07 |
F1-score | 79.92 | 81.53 | 15.40 | 81.81 | 64.09 | 77.83 | 75.62 | |
NearMiss | Accuracy | 34.07 | 17.00 | 5.66 | 5.98 | 6.81 | 21.67 | 21.69 |
F1-score | 9.62 | 7.69 | 7.19 | 7.49 | 7.11 | 8.59 | 8.59 | |
TomekLinks | Accuracy | 98.63 | 98.39 | 98.32 | 98.63 | 97.14 | 98.33 | 98.54 |
F1-score | 82.65 | 81.70 | 78.41 | 82.86 | 72.36 | 80.18 | 80.10 | |
SMOTETomek | Accuracy | 98.38 | 98.42 | 92.48 | 98.59 | 96.47 | 98.12 | 98.47 |
F1-score | 81.59 | 81.77 | 43.78 | 81.96 | 68.42 | 78.57 | 79.49 | |
ADASYN | Accuracy | 98.26 | 98.16 | 97.23 | 98.56 | 95.46 | 98.03 | 97.81 |
F1-score | 79.51 | 79.32 | 59.52 | 81.38 | 63.44 | 77.82 | 67.22 | |
KMeansSMOTE | Accuracy | 98.48 | 98.15 | 98.27 | 98.61 | 98.08 | 98.31 | 98.55 |
F1-score | 81.58 | 78.44 | 78.03 | 82.77 | 77.77 | 80.06 | 81.03 | |
BorderlineSMOTE | Accuracy | 98.30 | 98.05 | 96.45 | 97.63 | 95.47 | 98.01 | 97.98 |
F1-score | 80.63 | 78.71 | 34.37 | 63.62 | 63.50 | 77.54 | 70.49 |