Table 3 Classification accuracy and F1-score of seven classifiers on the first air compressor dataset using different sampling methods. UEDSM consistently achieves the best overall balance, with ALDNet+UEDSM attaining the highest performance.

From: Early detection of air leakage in IoT-connected compressors using enhanced data sampling with deep learning

  

ALDNet (%)

SVM (%)

Decision tree (%)

Random forest (%)

Naive Bayes (%)

KNN (%)

XGBoost (%)

UEDSM

Accuracy

98.69

98.44

98.29

98.56

95.58

98.05

98.50

F1-score

84.00

81.87

78.20

82.25

64.05

78.31

80.47

ClusterCentroids

Accuracy

98.23

98.47

64.70

98.53

95.58

98.02

98.07

F1-score

79.92

81.53

15.40

81.81

64.09

77.83

75.62

NearMiss

Accuracy

34.07

17.00

5.66

5.98

6.81

21.67

21.69

F1-score

9.62

7.69

7.19

7.49

7.11

8.59

8.59

TomekLinks

Accuracy

98.63

98.39

98.32

98.63

97.14

98.33

98.54

F1-score

82.65

81.70

78.41

82.86

72.36

80.18

80.10

SMOTETomek

Accuracy

98.38

98.42

92.48

98.59

96.47

98.12

98.47

F1-score

81.59

81.77

43.78

81.96

68.42

78.57

79.49

ADASYN

Accuracy

98.26

98.16

97.23

98.56

95.46

98.03

97.81

F1-score

79.51

79.32

59.52

81.38

63.44

77.82

67.22

KMeansSMOTE

Accuracy

98.48

98.15

98.27

98.61

98.08

98.31

98.55

F1-score

81.58

78.44

78.03

82.77

77.77

80.06

81.03

BorderlineSMOTE

Accuracy

98.30

98.05

96.45

97.63

95.47

98.01

97.98

F1-score

80.63

78.71

34.37

63.62

63.50

77.54

70.49

  1. Significant values are in [bold].