Table 2 Comparison of CNN and Transformer-based models in terms of parameter configuration, computational requirements, and structural complexity for skin disease image analysis.

From: Comparative performance of deep learning models and non-dermatologists in diagnosing psoriasis, dermatophytosis, and eczema

Method

Batch size

Loss function

Optimizer

Learning rate

Parameters

GFLOPs

AlexNet (2012)

4

Cross entropy loss

SGD

0.001

57.01 M

1.42

VGG19 (2014)

4

Cross entropy loss

SGD

0.001

139.58 M

39.28

GoogLeNet (2015)

4

Cross entropy loss

SGD

0.001

5.60 M

3.00

SqueezeNet (2016)

4

Cross entropy loss

SGD

0.001

0.73 M

1.47

ResNet-50 (2016)

4

Cross entropy loss

SGD

0.001

23.51 M

8.18

DenseNet-121 (2017)

4

Cross entropy loss

SGD

0.001

6.95 M

5.66

MobileNetV3 (2019)

4

Cross entropy loss

SGD

0.001

1.52 M

0.11

EfficientNetV2 (2021)

4

Cross entropy loss

SGD

0.001

20.18 M

5.70

ViT (2020)

4

Cross entropy loss

SGD

0.001

85.80 M

24.04

Swin (2021)

4

Cross entropy loss

SGD

0.001

86.74 M

21.10

CvT (2021)

4

Cross entropy loss

SGD

0.001

19.61 M

8.18

DaViT (2022)

4

Cross entropy loss

SGD

0.001

86.93 M

30.56

MaxViT (2022)

4

Cross entropy loss

SGD

0.001

30.40 M

10.96

GC ViT (2023)

4

Cross entropy loss

SGD

0.001

89.29 M

27.78

FastViT-S12 (2023)

4

Cross entropy loss

SGD

0.001

8.45 M

2.80

SHViT-S1 (2024)

4

Cross entropy loss

SGD

0.001

13.79 M

1.21

  1. GFLOPs, Giga Floating Point Operations per second; M, million; SGD, Stochastic Gradient Descent.