Table 2 Symbol and its physical meaning.
Symbol | Physical meaning |
|---|---|
\({\mathscr {I}}_m\) | A identity matrix of dimension m |
\(\mathscr {P} >\) 0 | \(\mathscr {P}\) is a positive definite matrix |
\(\otimes\) | The Kronecker product |
\(*\) | The terms derived from the omission of symmetry |
\(x_i\), \(v_i\) | The state and velocity of ith agent, respectively |
H1, H2, H3, F1, F2, F3 | Gain matrix parameters of the estimator |
\({\sigma _i}\) | The threshold parameter |
\(\Omega _i\) | Adjustment parameter matrix |
\(\eta _1\), \(\eta _2\), \(\eta _3\), \(\beta\), \(\vartheta _1\), \(\eta _M\) | Scalars parameter |
\(\tilde{P}\), \(\tilde{Q}_1\), \(\tilde{Q}_2\) | Positive real matrices |
\(\tilde{W}_1\), \(\tilde{W}_2\) | Appropriate dimensions matrix |
\({\tilde{e}}_i\), \({\tilde{e}}_{fi}\) | State estimation error and fault estimation error, respectively |
\({\tilde{\varepsilon }}_i\) | \({\tilde{\varepsilon }}_i = \mathrm{{col}} \{ {\tilde{e}}_i, {\tilde{e}}_{fi} \}\) |
\({\bar{e}}_i\) | Consensus error |
\(\varpi\) | \(\varpi = \mathrm{{col}} \{ \omega , f_{xi}, f_{xj}, f_{vj}, f_{ui}, {\dot{f}}_{xi}, {\dot{f}}_{xj}, {\dot{f}}_{vj} \}\) |