Table 7 Test results of training set samples.

From: Machine learning detection of manipulative environmental disclosures in corporate reports

Panel A. Comparison of SMOTE forecast performance metrics

 

Logistic regression (LR)

Decision Trees (DT)

Random Forest (RF)

Accuracy

0.5437

0.7373

0.8368

F1-Score

0.48

0.79

0.85

AUC Value

0.5437

0.7373

0.8368

Panel B. Comparison of ADASYN forecast performance metrics

 

Logistic regression (LR)

Decision trees (DT)

Random Forest (RF)

Accuracy

0.5099

0.6669

0.7409

F1-Score

0.45

0.65

0.75

AUC Value

0.51

0.6669

0.7408