Table 8 TEST set sample results after using Borderline-SMOTE.

From: Machine learning detection of manipulative environmental disclosures in corporate reports

Panel A. Confusion matrix of Borderline SMOTE-LR forecast

 

Predicted class

 

Manipulated

Not-Manipulated

Actual Class

Manipulated

3486

1777

Not-manipulated

24

20

Panel B. Confusion matrix of Borderline SMOTE-DT forecast

 

Predicted class

 

Manipulated

Not-Manipulated

Actual Class

Manipulated

2721

2535

Not-manipulated

17

34

Panel C. Confusion matrix of Borderline-SMOTE-RF forecast

 

Predicted class

 

Manipulated

Not-Manipulated

Actual Class

Manipulated

3951

1305

Not-manipulated

27

24

Panel D. Comparison of performance metrics

 

Borderline SMOTE-LR

Borderline SMOTE-DT

Borderline SMOTE-RF

Accuracy

0.6606

0.5191

0.7490

Precision

0.9931

0.9938

0.9932

Recall

0.6624

0.5177

0.7517

F1-Score

0.7941

0.6808

0.8557

TPR

0.6624

0.5177

0.7517

FPR

0.5455

0.3333

0.5294

AUC Value

0.5585

0.5922

0.6112

PR-AUC

0.68

0.71

0.78

Balanced Accuracy

0.70

0.73

0.86

MCC

0.63

0.66

0.72