Table 2 Hyperparameter Tuning of Different Applied Models.

From: A novel hybrid approach for multi stage kidney cancer diagnosis using RCC ProbNet

Technique

Hyperparameter

RF

n_estimators=300, max_depth=300, random_state=0, criterion=’gini’

LR

penalty=’l2’, C=1.0, solver=’lbfgs’, max_iter=100

GNB

var_smoothing=1e-9

SGD

loss=’log’, learning_rate=’optimal’, max_iter=1000, tol=1e-3, random_state=0

KNC

n_neighbors=5, weights=’uniform’, algorithm=’auto’

CNN

epochs=10, batch_size=32, optimizer=’adam’, loss=’categorical_crossentropy’

\(VGG-19\)

epochs=10, batch_size=32, optimizer=’adam’, loss=’categorical_crossentropy’, input_shape=(224,224,3)