Table 4 Performance analysis on spatial features.

From: A novel hybrid approach for multi stage kidney cancer diagnosis using RCC ProbNet

Model

Acc.

Class

Prec.

Rec.

F1

KNC

0.58

Grade 0

0.75

0.86

0.80

Grade 1

0.45

0.56

0.50

Grade 2

0.47

0.64

0.54

Grade 3

0.50

0.44

0.47

Grade 4

1.00

0.62

0.76

Avg.

0.63

0.62

0.61

SGD

0.71

Grade 0

0.75

0.86

0.80

Grade 1

0.00

0.00

0.00

Grade 2

0.70

0.64

0.67

Grade 3

0.62

0.94

0.75

Grade 4

0.86

0.92

0.89

Avg.

0.59

0.67

0.62

RF

0.91

Grade 0

0.88

1.00

0.93

Grade 1

1.00

0.78

0.88

Grade 2

0.91

0.91

0.91

Grade 3

0.82

0.88

0.85

Grade 4

1.00

1.00

1.00

Avg.

0.79

0.80

0.81

NB

0.75

Grade 0

0.50

0.57

0.53

Grade 1

0.43

0.67

0.52

Grade 2

0.59

0.91

0.71

Grade 3

0.83

0.31

0.45

Grade 4

1.00

0.85

0.92

Avg.

0.67

0.66

0.63

LR

0.71

Grade 0

0.88

0.89

0.88

Grade 1

0.75

0.83

0.84

Grade 2

0.81

0.90

0.88

Grade 3

0.90

0.91

0.90

Grade 4

0.89

0.90

0.90

Avg.

0.79

0.77

0.80

GNB

0.20

Grade 0

0.00

0.00

0.00

Grade 1

0.00

0.00

0.00

Grade 2

0.20

0.36

0.26

Grade 3

0.29

0.38

0.32

Grade 4

0.38

0.38

0.38

Avg.

0.17

0.22

0.19