Table 1 k-mer embedding encodes more accurate motif information.

From: AttBiLSTM_DE: enhancing anticancer peptide prediction using word embedding and an optimized attention-based BiLSTM framework

Feature Extractor

k-mer

AUC (%)

ACC (%)

MCC (%)

Sensitivity (%)

Specificity (%)

Precision (%)

F1 (%)

One hot encoding

1

82.31

78.19

56.59

81.18

75.41

75.41

78.19

2

87.07

80.74

61.41

79.41

81.97

80.36

79.88

3

87.66

83.29

66.66

78.24

87.98

85.81

81.85

4

86.00

79.60

59.39

82.35

77.05

76.92

79.55

5

85.57

80.17

60.27

78.82

81.42

79.76

79.29

6

87.52

80.17

60.27

77.65

82.51

80.49

79.04

Word2Vec

1

86.91

78.75

59.99

91.76

66.67

71.89

80.62

2

83.38

76.20

53.78

61.76

89.62

84.68

71.43

3

87.17

80.17

60.27

78.24

81.94

80.12

79.17

4

68.50

64.02

29.35

74.71

54.10

60.19

66.67

5

62.41

56.37

12.21

41.18

70.49

56.45

47.62

6

60.05

58.36

16.87

60.59

56.28

56.28

58.36

GloVe

1

85.12

78.19

56.38

78.82

77.60

76.57

77.68

2

84.35

76.49

53.41

81.18

72.13

73.02

76.88

3

84.47

80.17

60.83

71.18

88.52

85.21

77.56

4

59.21

57.79

18.45

21.18

91.80

70.59

32.58

5

61.62

60.06

19.90

56.47

63.39

58.90

57.66

6

62.73

59.77

19.38

57.06

62.30

58.43

57.06

fastText

1

84.71

76.77

53.75

68.82

84.15

80.14

74.05

2

83.64

75.35

53.40

89.41

62.30

68.78

89.41

3

85.36

77.05

55.32

85.88

68.85

71.92

78.28

4

64.29

61.76

24.02

41.76

80.33

66.36

51.26

5

61.52

57.22

16.40

73.53

42.08

54.11

62.54

6

61.40

55.81

11.04

37.06

73.22

56.25

44.68