Table 5 Performance comparison of different attention-based models on Train and Independent datasets across various evaluation metrics.

From: AttBiLSTM_DE: enhancing anticancer peptide prediction using word embedding and an optimized attention-based BiLSTM framework

Dataset

Model

AUC (%)

ACC (%)

MCC (%)

Sensitivity (%)

Specificity (%)

Precision (%)

F1 (%)

Train Dataset

AttXGBoost

86.62

82.00

64.20

76.15

87.40

83.84

79.81

AttDenseFusion

91.65

83.00

67.82

92.66

74.80

75.94

83.47

AttGRU

93.58

86.00

71.13

86.24

85.04

83.19

84.68

AttMLP

91.99

83.05

65.90

81.65

84.25

81.65

81.65

AttBiLSTM

91.35

85.59

71.46

88.99

82.68

81.51

85.09

AttBiLSTM_DE(LR-guided Optimization)

94.74

86.86

74.25

91.74

82.68

81.97

86.58

AttBiLSTM_DE(AttBiLSTM-guided Optimization)

94.40

86.91

73.85

91.60

82.60

81.91

86.50

Independent Dataset

AttXGBoost

97.28

92.00

77.25

70.13

98.85

94.74

80.60

AttDenseFusion

97.63

94.66

84.45

81.82

98.46

94.03

87.50

AttGRU

95.19

90.00

75.00

95.00

88.00

70.19

81.00

AttMLP

97.99

94.36

84.08

88.31

96.15

87.18

87.74

AttBiLSTM

98.04

95.55

87.12

83.12

99.23

96.97

89.51

AttBiLSTM_DE(LR-guided Optimization)

98.48

95.85

88.00

87.01

98.46

94.37

90.54

AttBiLSTM_DE(AttBiLSTM-guided Optimization)

98.39

96.44

87.75

86.89

98.55

92.98

89.83