Table 1 Families of \({\Pi }({\phi })\) and \(\bigg (\frac{{\Pi }'({\phi })}{{\Pi }({\phi })}\bigg )\), wherein \({\eta } ={\rho }^2-4{\varrho } {\varpi }\) and \({\Psi }=\cosh \left( \frac{1}{4}\,\sqrt{\eta }{\phi } \right) \sinh \left( \frac{1}{4}\,\sqrt{\eta }{\phi } \right)\).

From: Chaotic analysis, hopf bifurcation and collision of optical periodic solitons in (2+1)-dimensional degenerated Biswas–Milovic equation with Kerr law of nonlinearity

S. No.

Family

Condition(s)

\({\Pi }({\phi })\)

\(\bigg (\frac{{\Pi }'({\phi })}{{\Pi }({\phi })}\bigg )\)

1

Trigonometric Solutions

\({\eta }<0, \quad {\varrho }\ne 0\)

\(-{\frac{{\rho }}{2{\varrho }}}+{\frac{\sqrt{-{\eta }}\tan \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) }{2{\varrho }}}\),

\(-\frac{1}{2}\,{\frac{{\eta }\, \left( 1+ \left( \tan \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) \right) ^{2} \right) }{-{\rho }+\sqrt{-{\eta }}\tan \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) }}\),

\(-{\frac{{\rho }}{2{\varrho }}}-{\frac{\sqrt{-{\eta }}\cot \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) }{2{\varrho }}}\),

\(\frac{1}{2}\,{\frac{ \left( 1+ \left( \cot \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) \right) ^{2} \right) {\eta }}{{\rho }+\sqrt{-{\eta }}\cot \left( \frac{1}{2}\,\sqrt{-{\eta }}{\phi } \right) }}\),

\(-{\frac{{\rho }}{2{\varrho }}}+{\frac{\sqrt{-{\eta }} \left( \tan \left( \sqrt{-{\eta }}{\phi } \right) + \left( \sec \left( \sqrt{-{\eta }}{\phi } \right) \right) \right) }{2{\varrho }}}\),

\(-{\frac{{\eta }\, \left( 1+\sin \left( \sqrt{-{\eta }}{\phi } \right) \right) \sec \left( \sqrt{-{\eta }}{\phi } \right) }{ -{\rho }\cos \left( \sqrt{-{\eta }}{\phi } \right) +\sqrt{-{\eta }}\sin \left( \sqrt{-{\eta }}{\phi } \right) +\sqrt{-{\eta }} }}\),

\(-{\frac{{\rho }}{2{\varrho }}}+{\frac{\sqrt{-{\eta }} \left( \tan \left( \sqrt{-{\eta }}{\phi } \right) - \left( \sec \left( \sqrt{-{\eta }}{\phi } \right) \right) \right) }{2{\varrho }}}\).

\({\frac{{\eta }\, \left( \sin \left( \sqrt{-{\eta }}{\phi } \right) -1 \right) \sec \left( \sqrt{-{\eta }}{\phi } \right) }{ -{\rho }\cos \left( \sqrt{-{\eta }}{\phi } \right) +\sqrt{-{\eta }}\sin \left( \sqrt{-{\eta }}{\phi } \right) -\sqrt{-{\eta }} }}\).

2

Hyperbolic Solutions

\({\eta }>0, \quad {\varrho }\ne 0\)

\(-{\frac{{\rho }}{2{\varrho }}}-{\frac{\sqrt{{\eta }}\tanh \left( \frac{1}{2}\,\sqrt{{\eta }}{\phi } \right) }{2{\varrho }}}\),

\(-\frac{1}{2}\,{\frac{ \left( -1+ \left( \tanh \left( \frac{1}{2}\,\sqrt{{\eta }}{\phi } \right) \right) ^{2} \right) {\eta }}{{\rho }+\sqrt{{\eta }}\tanh \left( \frac{1}{2}\,\sqrt{{\eta }}{\phi } \right) }}\),

\(-{\frac{{\rho }}{2{\varrho }}}-{\frac{\sqrt{{\eta }} \left( \tanh \left( \sqrt{{\eta }}{\phi } \right) + i \left( \textrm{sech} \left( \sqrt{{\eta }}{\phi } \right) \right) \right) }{2{\varrho }}}\),

\(-{\frac{{\eta }\, \left( -1+i\sinh \left( \sqrt{{\eta }}{\phi } \right) \right) }{\cosh \left( \sqrt{{\eta }}{\phi } \right) \left( {\rho }\cosh \left( \sqrt{{\eta }}{\phi } \right) +\sqrt{{\eta }}\sinh \left( \sqrt{ {\eta }}{\phi } \right) +i\sqrt{{\eta }} \right) }}\),

\(-{\frac{{\rho }}{2{\varrho }}}-{\frac{\sqrt{{\eta }} \left( \tanh \left( \sqrt{{\eta }}{\phi } \right) - i \left( \textrm{sech} \left( \sqrt{{\eta }}{\phi } \right) \right) \right) }{2{\varrho }}}\),

\(-{\frac{{\eta }\, \left( 1+i\sinh \left( \sqrt{{\eta }}{\phi } \right) \right) }{\cosh \left( \sqrt{{\eta }}{\phi } \right) \left( -{\rho }\cosh \left( \sqrt{{\eta }}{\phi } \right) -\sqrt{{\eta }}\sinh \left( \sqrt{ {\eta }}{\phi } \right) +i\sqrt{{\eta }} \right) }},\)

\(-{\frac{{\rho }}{2{\varrho }}}-{\frac{\sqrt{{\eta }} \left( \coth \left( \sqrt{{\eta }}{\phi } \right) + \left( \textrm{csch} \left( \sqrt{{\eta }}{\phi } \right) \right) \right) }{2{\varrho }}}\).

\(-\frac{1}{4}\,{\frac{{\eta }\, \left( 2\, \left( \cosh \left( \frac{1}{4}\,\sqrt{ {\eta }}{\phi } \right) \right) ^{2}-1 \right) }{{\Psi } \left( -2\,{\rho }{\Psi } +\sqrt{{\eta }} \right) }}.\)

3

Rational Solutions

\({\eta }=0\)

\(-2\,{\frac{{\varpi } \left( {\rho }{\phi }\,+2 \right) }{{{\rho }}^{2}{\phi }\,}}\),

\(-2\,{\frac{1}{{\phi }\, \left( {\rho }{\phi }+2 \right) }}\),

\({\eta }=0\), & \({\rho }={\varrho }=0\)

\({\phi }\,{\varpi }\),

\(\frac{1}{{\phi }\,}\),

\({\eta }=0\), & \({\rho }={\varpi }=0\)

\(-{\frac{1}{{\phi }\,{\varrho }}}\).

\(-\frac{1}{{\phi }\,}\).

4

Exponential Solutions

\({\varrho }=0\), & \({\rho }={{\sigma }}\), \({\varpi }={\varsigma }{{\sigma }}\)

\({e}^{{{\sigma }}\,{\phi }}-{\varsigma }\),

\({\frac{{{\sigma }}\,{\textrm{e}^{{{\sigma }}\,{\phi }}}}{{\textrm{e}^{{{\sigma }}\,{\phi }}}-{\varsigma }}}\),

\({\varpi }=0\), & \({\rho }={{\sigma }}\), \({\varrho }={\varsigma }{{\sigma }}\)

\({\frac{{e}^{{{\sigma }}\,{\phi }}}{1-{\varsigma }{e}^{{{\sigma }} {\phi }}}}\).

\(-{\frac{{{\sigma }}}{-1+{\varsigma }{\textrm{e}^{{{\sigma }}\,{\phi }}}}}\).

5

Rational-Hyperbolic Solutions

\({\varpi }=0\), & \({\rho }\ne 0\), \({\varrho }\ne 0\)

\(-{\frac{{s_1}\,{\rho }}{{\varrho } \left( \cosh \left( {\rho } {\phi } \right) -\sinh \left( {\rho } {\phi } \right) +{s_1} \right) }}\),

\({\frac{{\rho } \left( \sinh \left( {\rho }{\phi } \right) -\cosh \left( {\rho }{\phi } \right) \right) }{-\cosh \left( {\rho }{\phi } \right) +\sinh \left( {\rho }{\phi } \right) -{s_1}}}\),

\(-{\frac{{\rho } \left( \cosh \left( {\rho } {\phi } \right) +\sinh \left( {\rho } {\phi } \right) \right) }{{\varrho } \left( \cosh \left( {\rho } {\phi } \right) +\sinh \left( {\rho } {\phi } \right) +{s_2} \right) }}\).

\({\frac{{\rho }{s_2}}{\cosh \left( {\rho }{\phi } \right) +\sinh \left( {\rho }{\phi } \right) + {s_2}}}\).