Table 8 Computational and robustness trade-offs of CSS approaches.
Method | Complexity (FLOPs) | Latency (ms) | Overfitting Risk | Attack Robustness |
|---|---|---|---|---|
IGS/HGS | \(O(m)\) | 0.5 | None | Low (fails at >20% attacks) |
CNN30 | \(O(L \cdot f \cdot m)\) | 4.1 | Moderate (no dropout) | Medium (fails at 50% YFS) |
DRL26 | \(O(\Vert A\Vert \cdot \Vert S\Vert )\) | 5.8 | High (sparse rewards) | Low (needs retraining) |
DE-ML35 | \(O(m \cdot k + p)\) | 3.9 | Medium | Partial (MUs only) |
DAEEC | \(\mathbf {O(m)_{\textrm{DAE}} + O(30 \cdot d \cdot m)_{\textrm{EC}}}\) | 3.2 | Low (regularized) | High (100% attacks) |