Table 3 Five-fold cross-validated performance for all models using dynamic accelerometric features. Values are expressed as mean (min–max) across folds.

From: Feasibility of accelerometer-based prediction of postural balance in schoolchildren using machine learning models

Outcome (Dynamic)

Model

MSE (mean [min–max])

\(R^2\) (mean [min–max])

Flamingo

Linear regression

18.25 (16.70–19.90)

− 0.03 (− 0.20–0.11)

Decision tree

43.35 (39.00–48.20)

− 1.45 (− 1.70– − 1.20)

Random forest

24.13 (21.50–27.80)

− 0.37 (− 0.55– − 0.18)

k-nearest neighbors

23.90 (21.80–27.00)

− 0.36 (− 0.52– − 0.18)

Support vector regression

25.40 (23.10–28.70)

− 0.42 (− 0.61– − 0.25)

Gradient boosting

26.70 (24.00–30.10)

− 0.49 (− 0.68– − 0.31)

Balance beam

Linear regression

12.50 (11.30–13.80)

0.13 (0.01–0.25)

Decision tree

32.20 (29.00–35.40)

− 1.24 (− 1.50– − 0.95)

Random forest

16.83 (15.00–18.90)

− 0.17 (− 0.35–0.02)

k-Nearest Neighbors

16.40 (15.20–18.10)

− 0.15 (− 0.28–0.01)

Support vector regression

17.50 (15.70–19.60)

− 0.19 (− 0.32–0.03)

Gradient boosting

18.90 (17.00–21.00)

− 0.23 (− 0.38– − 0.06)