Table 1 Numerical simulations of various phase estimation algorithms were performed. The indices \(^1\), \(^2\), and \(^3\) denote algorithms that (i) do not use, (ii) fully use, and (iii) partially use the already measured field, respectively. The parameters were set to \(\tau ^* = 512\) and \({\Delta t} = 1\).

From: Phase estimation algorithms for quantum enhanced magnetometry with artificial atoms

Algorithm

\(N_\textrm{tests}\)

\(N_\textrm{errors}\)

\(\sigma ^2\)

\(\sum \limits _k^m N_\textrm{k}\)

\(N_\mathrm{{\tau = \tau ^*}}\)

\(t_\mathrm{{min}}\)

K

10, 000

3734

\(38.2 \pm 0.9\)

263

123

1

\(\text {K}^1\)

10, 000

44

\(26.6 \pm 0.4\)

263

115

1

\(\text {K}^2\)

10, 000

11

\(15.0 \pm 0.2\)

263

123

1

F

10, 000

3528

\(40.8 \pm 0.8\)

263

123

1

\(\text {F}^2\)

10, 000

876

\(39.0 \pm 0.7\)

263

123

1

\(\text {SRK}^3\)

10, 000

9

\(15.4 \pm 0.2\)

263

120

8

\(\text {RK}^1\)

10, 000

6

\(13.0 \pm 0.2\)

263

41

256

\(\text {RK}^2\)

10, 000

161

\(9.1 \pm 0.1\)

263

41

256

\(\text {RK}^3\)

10, 000

18

\(11.4 \pm 0.2\)

263

41

256

\(\text {ELAMA}^2\)

10, 000

0

\(8.2 \pm 0.1\)

263

8

256

\(\text {K}^2\)

10, 000

0

\(6.3 \pm 0.1\)

512

278

1

\(\text {F}^2\)

10, 000

352

\(23.6 \pm 0.5\)

512

278

1

\(\text {SRK}^3\)

10, 000

1

\(6.3 \pm 0.1\)

512

275

8

\(\text {RK}^2\)

10, 000

35

\(4.4 \pm 0.1\)

512

144

256

\(\text {RK}^3\)

10, 000

0

\(5.3 \pm 0.1\)

512

144

256

\(\text {ELAMA}^2\)

10, 000

0

\(3.9 \pm 0.1\)

512

256

257

\(\text {LAMA}^2\)

10, 000

0

\(6.5 \pm 0.1\)

512

1

1