Table 4 Urbach energy and different methodologies to study \(\:{E}_{g}\) for Polar PVA and PVA/NiMC films.

From: Fully environmental approach to design advanced optical polymer composites with high optoelectronic performance using green synthesized nickel metal complexes

Samples

\(\:{\varvec{E}}_{\varvec{U}}\)

\(\:\left(\varvec{e}\varvec{V}\right)\)

\(\:{\:\varvec{E}}_{\varvec{g}}^{{\varvec{\sigma\:}}_{\varvec{o}\varvec{p}\varvec{t}}}\)

\(\:\left(\varvec{e}\varvec{V}\right)\)

\(\:{\varvec{E}}_{\varvec{g}}^{{\varvec{\sigma\:}}_{\varvec{e}}}\)

\(\:\left(\varvec{e}\varvec{V}\right)\)

\(\:{\varvec{E}}_{\varvec{o}\varvec{p}\varvec{t}\:}\left(\frac{\varvec{d}\varvec{T}}{\varvec{d}\varvec{\lambda\:}}\right)\)

\(\:\:\:\:\:\left(\varvec{e}\varvec{V}\right)\)

\(\:{\varvec{E}}_{\varvec{o}\varvec{p}\varvec{t}}\left(\frac{\varvec{d}\varvec{R}}{\varvec{d}\varvec{\lambda\:}}\right)\)

\(\:\:\:\:\:\:\left(\varvec{e}\varvec{V}\right)\)

\(\:{\:\varvec{E}}_{\varvec{g}\:}\left(\varvec{e}\varvec{V}\right)\)

from \(\:{\varvec{\varepsilon\:}}_{\varvec{i}}\)

\(\:{\varvec{E}}_{\varvec{g}\:}\left(\varvec{e}\varvec{V}\right)\)

edge

\(\:{\:\varvec{E}}_{\varvec{g}}^{\varvec{t}\varvec{a}\varvec{n}\left(\varvec{\delta\:}\right)}\)

\(\:\:\left(\varvec{e}\varvec{V}\right)\)

\(\:\varvec{l}\varvec{n}\left(\varvec{A}\right)\)

\(\:\left(\varvec{e}\varvec{V}\right)\)

Q-factor

(eV)

PVNiMC0

0.28

6.05

6.22

-

-

6.09

6.05

6.05

-

5.58

PVNiMC1

0.46

2.26

1.97

1.812

1.813

2.23

2.19

2.00

2.52

2.37

PVNiMC2

0.53

1.85

1.94

1.816

1.817

1.81

1.81

1.48

2.47

2.29

PVNiMC3

0.62

1.73

1.92

1.820

1.821

1.74

1.71

1.46

2.27

2.30