Table 2 Attack performance comparison of different target models trained on the celeba Dataset. ↑and ↓ respectively symbolize that higher and lower scores give better attack performance.

From: Enhanced model inversion via frequency disentanglement and latent space optimization

Target model

Method

↑ACC@1

↑ACC@5

↓FID

↓KNN

VGG16

KED_MI

0.67 ± 0.0025

0.89 ± 0.0016

36.29

1394.55

LOM(GMI)

0.77 ± 0.0464

0.95 ± 0.0216

43.21

1296.26

LOM(KED_MI)

0.90 ± 0.0136

0.98 ± 0.0610

33.91

1147.41

PLG_MI

0.97 ± 0.0001

1. ± 0.0000

18.00

1119.35

CMD_MI

0.93 ± 0.0004

0.99 ± 0.0002

23.82

1081.98

Ours(w/o TK)

0.99 ± 0.0021

1 ± 0.0000

17.00

998.55

Ours

1 ± 0.0001

1 ± 0.0000

17.15

983.83

IR152

KED_MI

0.73 ± 0.0025

0.93 ± 0.0008

26.24

1320.22

LOM(GMI)

0.82 ± 0.0437

0.97 ± 0.0241

45.02

1254.32

LOM(KED_MI)

0.92 ± 0.0115

0.98 ± 0.0370

36.78

1138.62

PLG_MI

1 ± 0.0000

1 ± 0.0000

22.35

1028.72

CMD_MI

0.97 ± 0.0004

0.99 ± 0.0002

25.77

1010.70

Ours(w/o TK)

1 ± 0.0001

1 ± 0.0000

18.72

1007.35

Ours

1 ± 0.0001

1 ± 0.0000

17.69

1005.07

FaceNet64

KED_MI

0.74 ± 0.0012

0.94 ± 0.0010

27.92

1310.10

LOM(GMI)

0.82 ± 0.0351

0.93 ± 0.0242

44.07

1257.50

LOM(KED_MI)

0.93 ± 0.0850

0.99 ± 0.0330

38.69

1154.32

PLG_MI

0.99 ± 0.0002

1. ± 0.0000

24.29

1112.76

CMD_MI

0.94 ± 0.0003

1 ± 0.0001

28.16

1025.36

Ours(w/o TK)

1 ± 0.0000

1 ± 0.0000

18.39

1094.78

Ours

1 ± 0.0000

1 ± 0.0000

18.40

1083.36