Table 2 Attack performance comparison of different target models trained on the celeba Dataset. ↑and ↓ respectively symbolize that higher and lower scores give better attack performance.
From: Enhanced model inversion via frequency disentanglement and latent space optimization
Target model | Method | ↑ACC@1 | ↑ACC@5 | ↓FID | ↓KNN |
|---|---|---|---|---|---|
VGG16 | KED_MI | 0.67 ± 0.0025 | 0.89 ± 0.0016 | 36.29 | 1394.55 |
LOM(GMI) | 0.77 ± 0.0464 | 0.95 ± 0.0216 | 43.21 | 1296.26 | |
LOM(KED_MI) | 0.90 ± 0.0136 | 0.98 ± 0.0610 | 33.91 | 1147.41 | |
PLG_MI | 0.97 ± 0.0001 | 1. ± 0.0000 | 18.00 | 1119.35 | |
CMD_MI | 0.93 ± 0.0004 | 0.99 ± 0.0002 | 23.82 | 1081.98 | |
Ours(w/o TK) | 0.99 ± 0.0021 | 1 ± 0.0000 | 17.00 | 998.55 | |
Ours | 1 ± 0.0001 | 1 ± 0.0000 | 17.15 | 983.83 | |
IR152 | KED_MI | 0.73 ± 0.0025 | 0.93 ± 0.0008 | 26.24 | 1320.22 |
LOM(GMI) | 0.82 ± 0.0437 | 0.97 ± 0.0241 | 45.02 | 1254.32 | |
LOM(KED_MI) | 0.92 ± 0.0115 | 0.98 ± 0.0370 | 36.78 | 1138.62 | |
PLG_MI | 1 ± 0.0000 | 1 ± 0.0000 | 22.35 | 1028.72 | |
CMD_MI | 0.97 ± 0.0004 | 0.99 ± 0.0002 | 25.77 | 1010.70 | |
Ours(w/o TK) | 1 ± 0.0001 | 1 ± 0.0000 | 18.72 | 1007.35 | |
Ours | 1 ± 0.0001 | 1 ± 0.0000 | 17.69 | 1005.07 | |
FaceNet64 | KED_MI | 0.74 ± 0.0012 | 0.94 ± 0.0010 | 27.92 | 1310.10 |
LOM(GMI) | 0.82 ± 0.0351 | 0.93 ± 0.0242 | 44.07 | 1257.50 | |
LOM(KED_MI) | 0.93 ± 0.0850 | 0.99 ± 0.0330 | 38.69 | 1154.32 | |
PLG_MI | 0.99 ± 0.0002 | 1. ± 0.0000 | 24.29 | 1112.76 | |
CMD_MI | 0.94 ± 0.0003 | 1 ± 0.0001 | 28.16 | 1025.36 | |
Ours(w/o TK) | 1 ± 0.0000 | 1 ± 0.0000 | 18.39 | 1094.78 | |
Ours | 1 ± 0.0000 | 1 ± 0.0000 | 18.40 | 1083.36 |