Table 4 Attack performance comparison across different model architectures during the GAN training phase and the image reconstruction phase. ↑and ↓ respectively symbolize that higher and lower scores give better attack performance.

From: Enhanced model inversion via frequency disentanglement and latent space optimization

FaceScrub-CelebA

VGG16

FaceNet64

IR152

ACC@1↑

FID↓

KNN↓

ACC@1↑

FID↓

KNN↓

ACC@1↑

FID↓

KNN↓

VGG16

PLG_MI

0.48 ± 0.0030

30.35

1520.50

0.71 ± 0.0020

26.85

1414.89

0.77 ± 0.0014

29.40

1340.56

Ours(wo/WT)

0.53 ± 0.0015

23.95

1479.89

0.71 ± 0.0025

25.08

1364.19

0.78 ± 0.0022

24.81

1308.65

Ours

0.55 ± 0.0032

24.95

1485.43

0.72 ± 0.0021

25.37

1365.59

0.77 ± 0.0022

24.94

1318.44

IR152

PLG_MI

0.51 ± 0.0031

25.32

1488.44

0.64 ± 0.0010

24.69

1446.20

0.64 ± 0.0023

23.64

1423.13

Ours(wo/WT)

0.57 ± 0.0025

23.88

1459.13

0.66 ± 0.0021

24.02

1414.76

0.66 ± 0.0017

23.28

1395.70

Ours

0.59 ± 0.0024

24.42

1437.02

0.69 ± 0.0020

24.15

1406.23

0.69 ± 0.0022

21.49

1390.25

FaceNet64

PLG_MI

0.46 ± 0.0012

26.29

1520.18

0.55 ± 0.0018

26.33

1532.04

0.66 ± 0.0027

25.42

1403.75

Ours(wo/WT)

0.49 ± 0.0015

25.53

1488.78

0.55 ± 0.0025

25.72

1482.68

0.66 ± 0.0016

24.80

1376.42

Ours

0.51 ± 0.0024

24.21

1481.48

0.57 ± 0.0018

25.68

1484.89

0.70 ± 0.0019

25.03

1381.08