Table 4 Comparison of no-reference image quality metrics for various enhancement techniques on the DICM dataset78.

From: A multi scale spatial attention based zero shot learning framework for low light image enhancement

Metric

Paired supervision

Unsupervised

Zero-shot learning

BIMEF102

LIME3

MF103

Multiscale Retinex104

EnlightenGAN56

SemZSL54

Zero-DCE52

Zero-DCE++53

Ours

NIMA91

4.52

4.42

4.56

4.58

4.29

4.29

4.22

4.24

4.36

PaQ2PiQ92

74.58

76.17

75.60

74.42

73.37

73.31

73.91

73.93

76.95

DBCNN93

51.36

50.58

51.60

52.89

45.61

45.95

44.53

44.55

52.38

musiq-koniq55

62.28

61.37

62.82

60.04

56.91

57.19

56.41

56.43

68.46

MANIQA94

0.66

0.64

0.66

0.61

0.62

0.62

0.61

0.63

0.63

CLIPIQA95

0.56

0.52

0.55

0.49

0.56

0.55

0.54

0.56

0.56

TReS-koniq96

69.64

64.48

70.45

70.33

65.16

65.19

64.22

64.24

66.42

HyperIQA97

0.53

0.52

0.54

0.53

0.44

0.44

0.42

0.44

0.45

GPR-BIQA10

0.70

0.68

0.69

0.67

0.61

0.61

0.60

0.62

0.72

Quality Net98

0.72

0.70

0.65

0.69

0.63

0.63

0.62

0.63

0.74

PIQI9

0.71

0.69

0.64

0.68

0.62

0.62

0.61

0.60

0.73

Average

24.21

23.71

24.43

24.18

22.62

22.67

22.43

22.44

24.76