Table 1 Overview of AI-driven models for CBR prediction in literature.

From: On the interpretability of machine and deep learning techniques for predicting CBR of stabilized soil containing agro-industrial wastes

Reference

Soil type

Independent variables

Applicated model

No. of datasets (training/testing)

Statistical output

Taskiran24

Fine-grained soils

LL, PI, MDD, OMC,

(C + S), Sa, Gr

ANN, GEP

119/32

R2 = 0.91, MSE = 2.207

Yildirim and Gunaydin22

Gr, Sa, MDD, OMC

ANN

88/36

R2 = 0.95, SE = 1.282

Kumar et al.38

LL, PI, OMC, MDD,

Sa, (C + S)

ANN (GRNN, MLPN)

42/18

R2 = 0.98, MSE = 0.22

Varghese et al39.

Fine-grained soils

LL, PL, OMC, MDD

ANN

Total no. of datasets = 145

R2 = 0.86, MAE = 0.5

Bhatt et al31.

Gr, Sa, OMC, MDD

ANN

102/12

R2 = 0.98, NA

Sabat40

Stabilized expansive soil using lime and quarry dust

LL, PI, OMC, MDD

ANN, SVM

36/13

R2 = 0.96, MAE = 1.42, RMSE = 0.56

Erzin and Turkoz32

Aegean sands

Gs, Cu, Cc, ρdry, MC,

Q, Fel, Ca, Co, A

ANN

49/12

R2 = 0.93, MAE = 2.53, RMSE = 3.65, VAF = 92.28%

Ghorbani and Hasanzadehshooiili23

Sulfate silty sand stabilized with Microsilica and Lime

L, M, CC, CD

ANN

63/27

R2 = 0.99, RMSE = 0.057

Suthar and Aggarwal33

Pond ash stabilized with lime and lime sludge

MDD, OMC, L, LS, CD

ANN

36/15

R2 = 0.96, MAE = 2.51, RMSE = 2.91

Ho and Tran42

Stabilized soil containing industrial waste

LL, PL, PI, OMC, MDD, QD, BA, CA, GSA, SDA, OPC

RF

203/87

R2 = 0.98, RMSE = 2.397, MAE = 1.168

Ikeagwuani20

Modified expansive soil

LL, PL, PI, MDD, OMC, SDA, QD, OPC

RF

76/33

R2 = 0.76, RMSE = 5.315, MAE = 3.92

González Farias et al.34

Granular and fine soil

Soils with Gr ≤ 35% F, PI

Soils with Gr ≥ 35% F, PI, OMC

ANN

Total no. of datasets = 96

Soils with Gr ≤ 35%: R2 = 0.84, MAE = 5.2

Soils with Gr ≥ 35%: R2 = 0.68, MAE = 11.6

Fikret Kurnaz and Kaya35

-

Gr, Sa, F, LL, PI,

OMC, MDD

ANN, GMDH

110/48

R2 = 0.94, MAE = 2.86, RMSE = 1.69

Alam et al.36

Fine-grained soils

Gs, Cu, Cc, LL, PL,

PI, OMC, MDD

ANN, GEP

Total no. of datasets = 20

R2 = 0.99, NA

Rafizul and Chandra37

Fine-grained soil stabilized with quarry dust, lime, and rice husk ash

QD, L, RHA,

CD, OMC, MDD

ANN, SVM

Total no. of datasets = 60

R2 = 0.99, MSE = 2.88

Taha et al.41

Granular materials

D60, MDD

ANN

174/44

R2 = 0.97, MAE = 3.32, RMSE = 4.18

Tenpe and Patel25

-

Gr, Sa, PI, MDD, OMC

SVM, GEP

Total no. of datasets = 389

R2 = 0.8, MSE = 3.5, RMSE = 1.85

  1. Gs specific gravity, Gr: percentage of gravel (%), Sa percentage of sand (%), (C+S) percentage of clay and silt, F percentage of fines (%), D60 diameter of 60% passing at sieve size distribution, Cu coefficient of uniformity, Cc coefficient of curvature, ρdry dry density, Q the proportions of quartz (%), Fel the proportions of feldspar (%), Ca the proportions of calcite (%), Co the proportions of corundum (%), A the proportions of amorphous minerals (%), LL liquid limit (%), PL plastic limit (%), PI plasticity index (%), MC moisture content (%), OMC optimum moisture content (%), MDD maximum dry density, OPC ordinary Portland cement, L lime content (%), RHA rice husk ash (%), SDA saw dust ash, BA bagasse ash, CA calcium ash, GSA groundnut shell ash, QD quarry dust content (%), CD curing days, NA not available, MSE mean square error, MAE mean absolute error.