Table 2 Deep feature extraction and fusion summary.

From: Efficient convolutional neural networks for acute lymphoblastic leukaemia prediction in computer vision

Backbone

model

Output layer

Feature

dimension

Post-processing

Normalization

Final use

DenseNet-121

GAP

1024

Dense connectivity,

pooled vector

StandardScaler + L2

Fusion input

ResNet-34

GAP

512

Residual mapping,

pooled vector

StandardScaler + L2

Fusion input

Fused Vector

Concatenation

1536

Optional PCA

→ ~480 comps

L2 norm

Classifier input