Table 2 Performance comparison of different methods on the dronevehicle validation dataset.
From: Cross-modal edge-enhanced detector for UAV-based multispectral object detection
DroneVehicle val. | |||||||
|---|---|---|---|---|---|---|---|
Methods | Car | Truck | Freight-car | Bus | Van | mAP@50 | Modality |
RetinaNet40 | 78.45 | 34.39 | 24.14 | 69.75 | 28.82 | 47.11 | Â |
Faster R-CNN41 | 79.69 | 41.99 | 33.99 | 76.94 | 37.68 | 54.06 | Â |
RoI Transformer42 | 61.55 | 55.05 | 42.26 | 85.48 | 44.84 | 61.55 | RGB |
S2ANet28 | 79.86 | 50.02 | 36.21 | 82.77 | 37.52 | 57.28 | Â |
Oriented R-CNN24 | 80.26 | 55.39 | 42.12 | 86.84 | 46.92 | 62.30 | Â |
RetinaNet40 | 88.81 | 35.43 | 39.47 | 76.45 | 32.12 | 54.45 | Â |
Faster R-CNN41 | 89.68 | 40.95 | 43.10 | 86.32 | 41.21 | 60.27 | Â |
RoI Transformer42 | 89.64 | 50.98 | 53.42 | 88.86 | 44.47 | 65.47 | IR |
S2ANet28 | 89.71 | 51.03 | 50.27 | 88.94 | 44.03 | 64.80 | Â |
Oriented R-CNN24 | 89.63 | 53.92 | 53.86 | 89.15 | 40.95 | 65.50 | Â |
Halfway Fusion45 | 89.85 | 60.34 | 55.51 | 88.97 | 46.28 | 68.19 | RGB + IR |
CIAN46 | 89.98 | 62.47 | 60.22 | 88.90 | 49.59 | 70.23 | |
AR-CNN47 | 90.08 | 64.82 | 62.12 | 89.38 | 51.51 | 71.58 | |
TSFADet7 | 89.88 | 67.87 | 63.74 | 89.81 | 53.99 | 73.06 | |
Cacade-TSFADet7 | 90.01 | 69.15 | 65.45 | 89.70 | 55.19 | 73.90 | |
CALNet44 | 90.27 | 73.69 | 68.67 | 89.70 | 59.74 | 76.41 | |
CMEE-Det | 96.08 | 74.28 | 57.32 | 96.73 | 63.81 | 77.65 | |