Table 2 Performance comparison of different methods on the dronevehicle validation dataset.

From: Cross-modal edge-enhanced detector for UAV-based multispectral object detection

DroneVehicle val.

Methods

Car

Truck

Freight-car

Bus

Van

mAP@50

Modality

RetinaNet40

78.45

34.39

24.14

69.75

28.82

47.11

 

Faster R-CNN41

79.69

41.99

33.99

76.94

37.68

54.06

 

RoI Transformer42

61.55

55.05

42.26

85.48

44.84

61.55

RGB

S2ANet28

79.86

50.02

36.21

82.77

37.52

57.28

 

Oriented R-CNN24

80.26

55.39

42.12

86.84

46.92

62.30

 

RetinaNet40

88.81

35.43

39.47

76.45

32.12

54.45

 

Faster R-CNN41

89.68

40.95

43.10

86.32

41.21

60.27

 

RoI Transformer42

89.64

50.98

53.42

88.86

44.47

65.47

IR

S2ANet28

89.71

51.03

50.27

88.94

44.03

64.80

 

Oriented R-CNN24

89.63

53.92

53.86

89.15

40.95

65.50

 

Halfway Fusion45

89.85

60.34

55.51

88.97

46.28

68.19

RGB + IR

CIAN46

89.98

62.47

60.22

88.90

49.59

70.23

AR-CNN47

90.08

64.82

62.12

89.38

51.51

71.58

TSFADet7

89.88

67.87

63.74

89.81

53.99

73.06

Cacade-TSFADet7

90.01

69.15

65.45

89.70

55.19

73.90

CALNet44

90.27

73.69

68.67

89.70

59.74

76.41

CMEE-Det

96.08

74.28

57.32

96.73

63.81

77.65