Table 11 Binary classification performance on APTOS 2019 datasets.

From: Knowledge distillation-based lightweight MobileNet model for diabetic retinopathy classification

Author and Year

Models

Trainable Parameters

Accuracy

Precision

Recall

F1-Score

Chetoui et al., 202032

EfficientNet-B7

66, 700, 000

-

-

98.1%

-

BK Anoop et al., 202225

Custom CNN

184, 197, 154

94.6%

-

86%

-

Bala et al., 202228

Custom CNN

1, 100, 000

97.54%

97.55%

-

0.97

Nandakumar et al., 202231

Modified DenseNet-121

-

96%

93.51%

98%

0.98

Begriche et al., 202334

fine-tuned XCeption

-

99.8%

-

-

-

 

ResNet152V2 + VIT (Teacher Model)

145, 800, 000

95.15%

-

-

-

Islam et al., 202339

XCeption + CBAM (Student Model)

21, 400, 000

99%

-

-

-

Tuncel et al., 202571

VGG16

-

97%

97%

97%

97%

Naveen et al., 202572

EffNet-SVM

-

97%

97%

97%

97%

Teacher Model

MobileNet

279, 378

99.45%

99.45%

99.45%

99.45%

Student without KD

Reduced parameter MobileNet

71,362

94.73%

94.73%

94.73%

94.73%

Student with KD (Proposed Model)

Reduced parameter MobileNet

71,362

98.36%

98.36%

98.36%

98.36%