Table 7 Comparison of proposed model with recent studies.

From: Optimized ANN–RF hybrid model with optuna for fault detection and classification in power transmission systems

Study

Model

Accuracy (%)

Precision (%)

Recall (%)

Test system and fault conditions

58

SVM

90

88

92

33 kV distribution system; LG, LL faults

36

CNN

95

94

96

IEEE 13-node test feeder; LG, LL, LLL faults

52

LSTM

92

90

91

Microgrid; LG, LLG faults

39

ANN

93

91

92

Transmission system; LG, LL faults

53

Decision tree

85

82

88

Distribution system; LG faults

54

Random forest

91

89

90

High-voltage transmission system; LG, LL, LLG faults

21

k-NN

88

86

89

Transmission system; LG, LL faults

21

AdaBoost

90

88

91

PV array system; LG, LLG faults

55

Gradient boosting

94

92

93

IEEE feeder; LG, LL, LLG faults

56

Transfer learning

89

87

90

Microgrid; LG, LL faults

Proposed model

Hybrid ANN-RFC with optuna

99.9

99.8

99.7

11 kV multi-generator system; No Fault, LG, LL, LLG, LLL, LLLG faults