Table 4 Model comparisons: MSE and R2 for different models for DS-I.

From: Software belief reliability growth model incorporating change point and imperfect debugging based on uncertain differential equation approach

No.

Model Name

Estimated Parameters

Comparison criteria

MSE

\(\:{\varvec{R}}^{2}\)

1

Delayed S-Shaped

\(\:a=374\:,\:b=0.19\)

200.2

0.983

2

GO model

\(\:a=750\:,\:b=0.17\)

166

0.986

3

Inflection S-shaped

\(\:a=380\:,\:b=0.17\:,\:\beta\:=2.88\)

105.7

0.991

4

S-shaped change-point

\(\:a=\:393,\:{b}_{1}=0.19\:,\:{b}_{2}=0.17\:\)

219.2

0.984

5

Pham-Zhang

\(\:a=330\:,\:b=\:0.28,\:c=21.03\:,\:\alpha\:=9.49\:,\:\)

\(\:\beta\:=10.20\)

141.6

0.990

6

Pure error generation

\(\:a=52.4\:,\:b=0.46\:,\:\alpha\:=0.93\)

177.0

0.986

7

Roy-Mahapatra-Dey model

\(\:a=\:180,\:b=0.05\:,\:\alpha\:=2.99\:,\:\beta\:=0.22\)

155.4

0.988

8

Yamada Exponential

\(\:a=1238\:,\:\alpha\:=5.29\:,\:\beta\:=0.01\:,\:\gamma\:=0.26\)

192.7

0.986

9

Yamada Imperfect 1

\(\:a=682\:,\:b=\:0.03,\:\alpha\:=0.002\)

178.6

0.986

10

Yamada Imperfect 2

\(\:a=589\:,\:b=0.04\:,\:\alpha\:=\)0.001

313.7

0.976

11

Yamada Rayleigh model

\(\:a=423\:,\:\alpha\:=1.73\:,\:\beta\:=0.01\:,\:\gamma\:=0.96\)

362.9

0.974

12

Proposed Model

\(\:\varvec{N}=423,\:{\varvec{b}}_{1}=0.05,\:{\varvec{b}}_{2}=0.04,\:{\varvec{\alpha\:}}_{1}=0.001,\)

\(\:{\varvec{\alpha\:}}_{2}=0.004,\:{\varvec{\upsigma\:}}_{1}=0.247,\:{\varvec{\upsigma\:}}_{2}=0.058\)

105.3

0.992