Table 6 Model comparisons: MSE and R2 for different models for DS-II.

From: Software belief reliability growth model incorporating change point and imperfect debugging based on uncertain differential equation approach

No.

Model name

Estimated parameters

Comparison criteria

MSE

\(\:{\varvec{R}}^{2}\)

1

Delayed S-Shaped

\(\:a=101\:,\:b=0.19\)

32.8

0.963

2

GO model

\(\:a=155\:,\:b=0.04\)

37.2

0.969

3

Inflection S-shaped

\(\:a=150\:,\:b=0.04\:,\:\beta\:=0.07\)

32.3

0.967

4

S-shaped change-point

\(\:a=\:121,\:{b}_{1}=0.16\:,\:{b}_{2}=0.10\:\)

56.4

0.943

5

Pham-Zhang

\(\:a=79\:,\:b=\:0.21,\:c=21.88\:,\:\alpha\:=0.19\:,\:\beta\:=0.16\)

36.8

0.965

6

Pure error generation

\(\:a=115\:,\:b=0.05\:,\:\alpha\:=0.27\)

34.7

0.963

7

Roy-Mahapatra-Dey model

\(\:a=\:149,\:b=0.20\:,\:\alpha\:=0.97\:,\:\beta\:=0.18\)

38.4

0.961

8

Yamada Exponential

\(\:a=211\:,\:\alpha\:=1.98\:,\:\beta\:=0.01\:,\:\gamma\:=1.10\)

32.3

0.969

9

Yamada Imperfect 1

\(\:a=113\:,\:b=\:0.05,\:\alpha\:=0.01\)

32.6

0.968

10

Yamada Imperfect 2

\(\:a=6\:,\:b=1.12\:,\:\alpha\:=\)0.73

55.7

0.941

11

Yamada Rayleigh model

\(\:a=176\:,\:\alpha\:=0.35\:,\:\beta\:=0.01\:,\:\gamma\:=2.10\)

37.4

0.965

12

Proposed Model

\(\:\varvec{N}=\:149,\:{\varvec{b}}_{1}=0.04,\:{\varvec{b}}_{2}=0.001,\)

\(\:{\varvec{\alpha\:}}_{1}=0.005,\:{\varvec{\alpha\:}}_{2}=0.001,\:{\varvec{\upsigma\:}}_{1}=0.298,\:{\varvec{\upsigma\:}}_{2}=0.463\)

31.9

0.970