Table 8 Model comparisons: MSE and R2 for different models with for DS-III.

From: Software belief reliability growth model incorporating change point and imperfect debugging based on uncertain differential equation approach

No.

Model name

Estimated parameters

Comparison criteria

MSE

\(\:{\varvec{R}}^{2}\)

1

Delayed S-Shaped

\(\:a=153\:,\:b=0.04\)

138

0.889

2

GO model

\(\:a=617\:,\:b=0.003\)

95.40

0.923

3

Inflection S-shaped

\(\:a=905\:,\:b=0.009\:,\:\beta\:=3.96\)

86.02

0.932

4

S-shaped change-point

\(\:a=\:131,\:{b}_{1}=0.04\:,\:{b}_{2}=2.16\:\)

77.97

0.939

5

Pham-Zhang

\(\:a=627\:,\:b=\:0.03,\:c=14.12\:,\:\alpha\:=1.02\:,\:\beta\:=34.4\)

92.72

0.929

6

Pure error generation

\(\:a=12\:,\:b=0.14\:,\:\alpha\:=1.03\)

85.07

0.933

7

Roy-Mahapatra-Dey model

\(\:a=\:176,\:b=0.001\:,\:\alpha\:=7.16\:,\:\beta\:=0.02\)

91.88

0.929

8

Yamada Exponential

\(\:a=962\:,\:\alpha\:=7.68\:,\:\beta\:=0.0002\:,\:\gamma\:=0.96\)

96.06

0.925

9

Yamada Imperfect 1

\(\:a=612\:,\:b=\:0.002,\:\alpha\:=0.007\)

84.61

0.933

10

Yamada Imperfect 2

\(\:a=6\:,\:b=0.23\:,\:\alpha\:=0.31\)

98.78

0.922

11

Yamada Rayleigh model

\(\:a=161\:,\:\alpha\:=0.79\:,\:\beta\:=0.0007\:,\:\gamma\:=1.99\)

177.4

0.86

12

Proposed Model

\(\:\varvec{N}=\:147,\:{\varvec{b}}_{1}=0.01,\:{\varvec{b}}_{2}=8.27,\:\)

\(\:{\varvec{\alpha\:}}_{1}=0.0001,\:{\varvec{\alpha\:}}_{2}=0.401,\:{\varvec{\upsigma\:}}_{1}=0.6212,\:{\varvec{\upsigma\:}}_{2}=1.647\)

6.03

0.995