Table 4 Eigenvalues and stability analysis of the jacobian matrix at equilibrium points.

From: Research on ambidextrous digital innovation strategies of SMEs embedded in industrial internet platforms based on evolutionary game theory

Point of equilibrium

Eigenvalues \(\varvec{\lambda }_{\textbf{1}}\)

Eigenvalues \(\varvec{\lambda }_{\textbf{2}}\)

Eigenvalues \(\varvec{\lambda }_{\textbf{3}}\)

\(E_1(0,0,0)\)

\(M+R\)

\(T-D_2\)

\(Q-L_2\)

\(E_2(0,0,1)\)

\(M+R+L_1-L_2\)

\(N+T-D_2\)

\(L_2-Q\)

\(E_3(0,1,0)\)

\(M+R+K_1-K_2\)

\(-\left( T-D_2\right)\)

\(-L_2+\beta G_2-N+Q\)

\(E_4(0,1,1)\)

\(M+R+K_1-K_2+L_1-L_2\)

\(-\left( N+T-D_2\right)\)

\(L_2-\beta G_2+N-Q\)

\(E_5(1,0,0)\)

\(-(M+R)\)

\(-D_1\)

\(Q-L_1\)

\(E_6(1,0,1)\)

\(-\left( M+R+L_1-L_2\right)\)

\(N -D_1\)

\(L_1-Q\)

\(E_7(1,1,0)\)

\(-\left( M+R+K_1-K_2\right)\)

\(D_1\)

\(-L_1-N+Q\)

\(E_8(1,1,1)\)

\(-\left( M+R+K_1-K_2+L_1-L_2\right)\)

\(-\left( N-D_1\right)\)

\(L_1+N-Q\)