Table 7 Comparative experimental results on VisDrone 2019 test set.

From: Enhanced small object detection in UAV aerial imagery through attention gated backbone and context aware fusion

Method

AP (%)

\(\hbox {AP}_{50}\) (%)

\(\hbox {AP}_{small}\) (%)

Params

GFLOPs

FPS

Faster-RCNN-R50 36

19.4

32.9

9.5

41.39M

208G

53.3

Cascade-RCNN-R50 37

19.7

32.6

9.9

69.29M

236G

44.1

RetinaNet-R50 38

16.4

27.6

6.0

36.52M

210G

56.7

YOLOv8n 39

14.4

25.9

5.9

3.0M

8.1G

238.1

YOLOv8s 39

17.3

30.7

7.8

11.13M

28.5G

158.7

YOLOv8m 39

19.0

33.2

9.0

25.85M

78.7G

135.5

YOLOv10n 40

14.2

26.1

6.3

2.28M

6.5G

244.4

YOLOv10s 40

17.9

32.3

8.6

7.22M

21.4G

172.4

YOLOv10m 40

19.5

34.5

9.7

15.32M

58.9G

105.4

YOLOv11n 41

14.2

25.8

5.8

2.59M

6.3G

250.0

YOLOv11s 41

17.6

31.3

8.0

9.42M

21.3G

175.4

YOLOv11m 41

20.3

35.0

9.8

20.40M

67.7G

117.1

RT-DETR-R18 28

20.8

36.3

15.7

19.86M

57G

78.1

RT-DETR-R34 28

20.8

36.2

16.1

31.44M

90.6G

68.3

RT-DETR-R50 28

21.6

37.8

16.9

42.94M

134.8G

58.1

Proposed Method

23.1

39.8

18.8

14.84M

65.7G

76.9